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ABSTRACT 

Murtuza, Syed, Ph.D., Purdue University, June, 1967. On the Design 
o f s p e c i f i c  O p t i m a l  Controllers. Major Professor: Violet B. Haas. 

This thesis contributes t o  the philosophy and t o  the sfate-of-the- 

a r t  of control system design. 

control theory requires knowledge of a l l  the s t a t e  variables of the 

The design of controllers using optimal 

system. 

index i s  defined over a finite interval  then the controller coefficients 

are time m c t i o n s .  Because of these undesirable features of optimal 

controllers, optimal control theory has not found i t s % y  in to  practice. 

In additioq i f  the plant i s  time-v- and/or i f  the performance 
i 

- 

An alternate approach is t o  pre-specify the  con6ol le r  configuration 

and determine i t s  unknown coefficients i n  some optimal fashion. I n  t h i s  

thes i s  the design of l inear  constant coefficient specific op tba l  con- 

t r o l l e r s  for  l inear,  multivariable and time-variant systems with inacces- 

sible s ta tes  i s  presented. The performance index chosen ( to  be minimized) 

i s  a quadratic functional of both s t a t e  and control variables. 

invariant cases it is  sham t h a t  when the coefficients of the specific 

For time- 

controller are properly chosen, the resulting system i s  guaranteed t o  be 

s table  (even i f  only one state is  accessible). Since the optimal values 

o f t h e  control parameters fo r  a fixed configuration controller depend on 

the i n i t i a l  states of the system, the approach taken is  t o  determine the 

best value of the parameters fo r  t he  most unfavorable i n i t i a l  s ta tes .  
A 

This i s  accomplished by finding xo and K such t h a t  



v i i i  

* 
Ja = a n  max 

xo 

where xo is the i n i t i a l  gtates vector end K the control perameter vector. 
* J1 and Jz are the values of the performance index corresponding t o  the 

optimal and the apecific optimal controllers rerpectively. 

computetionel method is developed whereby the globe1 maxinnun of the 

B b w e  r a t i o  with reepect t o  xo ie fowd. Wnimication with respect t o  IG 

is p e r f o m d  us- 6~ eiPtple gredient method. The convergence properties 

of the computational algorithm are investigated and the l imitations on 

the 'step size' for convergence are given, 

The computational algorithm is  applied t o  several examples t o  test  

the theory and t o  demonstrate the improvement i n  the resul ts  when com- 

pared t o  other methods. One of the examples consists of a time-varying 

system, 

additional d i f f icu l t ies .  

The time-varying nature of the problem does not cause any 
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1.1 

cept 

CHAPTER I 

INTRODUCTION 

Motivation 

A decade ago when Newton, Gould and Kaiser [l] popularized the con- 

of optimal control theory by designing control systems so as t o  t 

minimize the integral  square error, they had every reason t o  believe tha t  

the control systems of the future would be designed almost exclusively 

by those techniques. %day the theory i s  much more sophisticated and f a r  

advanced. Yet, strangely enough, a large majority of the practicing con- 

t r o l  engineers are skeptical about i t s  power and usefulness. Modern con- 

t r o l  theory, as  it is  called today, has found i t s  way in to  a very limited 

number of applications and only when the classical  frequency domain 

methods are rendered useless. 

for  the insignificant interest  of the practicing control engineers i n  

modern control theory as a control system synthesis toal:  

Evidently there are  three basic reasons 

1) Lack of direct  methods fo r  t ranslat ing the system's performance 

specifications in to  a single mathematical index of performance. 

Computational diff icul t ies  involved i n  finding feedback solu- 

t ions 

Difficult ies encountered i n  instrumentation of the optimal con- 

t r o l  law, when it can be found. 

'Strictly speaking, the credit  goes t o  N. Wiener. 

2) 

3) 

However Newton e t  al. 
were f i r s t  t o  devote an entire book on t h i s  topic with the practicing 
control engineers i n  mind. 
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This study i s  an effor t  t o  carefully analyze the above d i f f icu l t ies ,  

and t o  amalgamate the merits of the classical  and modern control theories 

i n  order t o  develop a new approach t o  the design of a class of l inear,  

time-varying control systems. 

1.2 State o f t h e  A r t  of Control System Design and Synthesis 

The design of an automatic control system s t a r t s  with a mathematical. 

description o f t h e  plant or  the process t o  be controlled, performance 

specifications, constraints and l imitations on system components and the 

input-output variables. 

unique, i n  other cases compromises may lead t o  several adequate solutions. 

In  some cases the solution of the problem may be 

A distinction i s  made between design and synthesis. This has been 

clearly brought forth by Tou 121. 

solution which sa t i s f i e s  the  statement of the problem. 

Design i s  the process of finding 5 

In  general the 

procedure i s  not straightforward, but requires engineering judgement 

and s k i l l .  Synthesis, on the other hand, i s  the more idea l  si tuation 

where there i s  a clear way, usually ent i re ly  mathematical, fo r  going fron 

the  problem statement t o  the solution. 

The existing approaches t o  design and synthesis of control systems 

may be classified in to  three categories. The first i s  the  well-known 

approach based upon transform methods. 

trial-and-error design procedure. The designer i s  given more or  l e s s  

arbi t rary specifications i n  t i m e  domain and/or frequency domain, and 

possibly a system configuration. 

specifications by gain adjustment or  equalizer compensation. 

approach, which has been referred t o  a s  analytical  design 113, uses an 

infinite-time integral  of squared-system error, o r  a mean-square e r ror  aE 

This i s  often referred t o  as  the 

The designer seeks t o  sat isfy the 

The second 
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a measure of the performance. 

network for  a l inear,  time-invariant system configuration upon application 

of c lass ical  variational methods t o  minimize the performance measure, 

The design procedure yields a compensation 

The form of the  compensator is more or  l e s s  f%xed aprior i  and as  such is 

usually not the optimal. 

adept t o  handle systems of moderate complexity, 

Moreover this approach is not sufficiently 

Both of the above approaches of control system design are confronted 

by severe l imitations and d i f f icu l t ies  when applied t o  the  design of m u l t i -  

variable and time varying systems. 

control theory, is a broad generalization of the second and has devel- 

oped i n  many different w a y s .  

tha t  as adequately as possible incorporates a l l  the factors tha t  add t o  

the cost of performance. Usually the  index of performance is a functional 

of plant and controlvariables.  "he control law which i s  an expression 

of t he  control variables as  functions of the plant variables is found by 

The t h i r d  approach, based on optimal 

It s t a r t s  out wi th  an index of performance 

minimizing the performance index subject t o  the plant dynamics. PhiPo- 

sophically, optfmal control theory is an attempt t o  provide a means of 

system synthesis as  opposed t o  system desigxl as  discussed above. In  a 

majority o f  cases i n  practice, however, it f a l l s  short of tha t  objective. 

Ffgure 1.1 shows the  flow-diagram representation of the three methods 

of design. 

[3]. 

and errorness". 

it is, haw easy it is t o  manipulate md the time it takes, other factors 

being equal, one method would be superior t o  the other. Apart from the 

fact  tha t  the analytical  design is not optimal, the ty-pe of performance 

The idea of flow-graph representation is borrowed *om Elgerd 

Note tha t  methods two and three also involve some degree of " t r i a l  

But t h i s  is a t  a different place. So depending on where 
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indices considered for analytical design are essentially limited t o  the 

in tegra l  of the square of t h e  system er ror ,  

optimal control design, the performance index can be a more general 

functional and as such is more l ikely t o  incorporate the performance 

specifications. 

Where as i n  the case of 

1.3 OrganizatiOh Or the Thesis 

Since for a solution t o  a specific optimal control (SOC) problem, 

a solution t o  the corresponding optimal control problem i s  required, 

essent ia l  results i n  optimal control theory are presented i n  chapter 11. 

A discussion on the choice of performance indices i s  also included here. 

I n  Chapter 111 a general SOC problem is stated.  A review of recent work 

i n  th i s  area i s  given and the  limitations of the  existing solutions 

pointed out. 

A general configuration of the specific optimal controller which guarantees 

the s t ab i l i t y  of the result ing system, i s  suggested. 

secondary performance index (J,) for  such a system i s  a ratio of two 

quadratic forms e 

Chapter IV i s  devoted t o  an analysis of l inear  SOC problem. 

It is shown tha t  the 

A major contribution of t h i s  thesis is the computational algorithm 

for  finding the global mxtmum of  Jz w i t h  respect t o  the i n i t i a l  s t a t e  

of the system, and the m i n i m u m  with respect t o  the SOC parameters. 

i s  presented i n  Chapter p J 0  

specific optimal controllers for  l inear,  multivarieble, autonomous and 

t i m e  varying systems. 

systems with non-zero forcing f’unction i s  also discussed. 

are considered t o  show the feasibi l i ty  of the  computetional algorithms 

and t o  iUus t r a t e  the imprwement i n  the pesults when compared t o  solutions 

’This 

The results are applicable t o  the design of 

A heuristic solution t o  the  controller design fo r  

A f e w  examples 
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I obtained by other methods. 

cussion of- the findings and suggestions for  future work. 

Chapter V I  conckudes the thes i s  wi th  a dis- 

1 
I 
1 
I '  
1 
1 



2 .I Problem Statement 

%In optfmcsl control problem can be stated i n  several different %pays 

]From the  point of view based on what is desired of the controi. system. 

of designing a continuous feed-beck c ~ n t r o U e r ,  the problem may be 

stated as TolPows. 

Suppose the p9mt to be controlled i s  6escri'bed by the d i f fe ren t ia l  

e quat i on 

4 = $(x, u, v, t )  

dto) = Xo 

(2 .le) 

(2 .lb j 

where x Es sn n-vector of the stafve variables of the  plant, u is ana- 

vector of the control variabLes, v i a j r  an r-vector ai known inputs; t o  the 

plant;, $' is a vec.f;or function o f  x, u, v and t o  "+ '@ represents derivative 

with respect, t, time. 

state xo are fixed, ana find s ta te  x(T) i s  free. 

problem is t o  find a control law u = u(x( t>> t )  such t h a t  a scalar f u c -  

h t  t he  initial time to9 f i n a l  time T and i n i t i a l  

The optima% control 
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. -  

to 

For reasons that w i l l  become obvious l a t e r ,  J 1 w i l l  be referred t o  as 

the primary performance index. 

2.2 Solution t o  the Optimal Control Problem 

Extensive research has been reported on techniques of finding the 

solution t o  the problem etated i n  Section 2.1. A.om a mathematical 
- 

point of view far-reaching progress i s  made i n  the r ight  direction. How- 

ever these results are not adequate from the  designer's point of view. 

Pbrtunately for  a large class of ( l inear  and/or time varying) control 

systems the  optimal control problem with quadratic performance index can 

be solved and the optimal control law fo r  an arbi t rary i n i t i a l  s t a t e  

obtained. Since the solution of the specific optimal control problem 

requires the  solution t o  the optimel control problem, a l inear  optimal 

control problem i s  considered i n  the next section. 

2 . 3  Linear Optimal Control Problem 

Consider a plant which sa t i s f i e s  the d i f fe ren t ia l  equation 

= A(t)x + B(t)u + C(t)v . (2.h) 

d t 0 )  = xo (2.43 j 

where, A is an nxn matrix, B an nxm matrix, C an nxr matrix and x, u 

and v are the same as  defined i n  Section 2.1. 

t ro l lab le  and completely obsemable for a l l  time. 

observable, also for  a l l  time. 

find a control law u = u(x( t ) , t )  which minimizes a quadratic functional 

[A,B] i s  completely con- 

[A,C] i s  completely 

A l inear  optimal control problem i s  t o  
* 

I 
I 
I 
1 
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I 
I 
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I 



9 

of  s t a t e  and controlvarflables given by 
T 

J1 = f (x'&l(t)x + u'u)dt + x'(T)$x(T) -.le 

where Q.,. and €$ are nxn positive and a t  l ea s t  semi-definite matrices. 

The solution t o  t h i s  problem i s  well known i n  the literature [4]. 

The optimal value of the performance index i s  given by 

and the optimal control law is  found t o  be 
* +  * 
u (X ( t ) , t )  = -BP(t)x ( t )  - BCg(t )  - -  

'*y**.indicates the optimal solution'. 

and the scalar function f ( t )  i n  (2.6) and (2.7) sat isfy the following 

The nxn matrix P(t), n-vector g ( t )  

set of different ia l  equations e 

= PBB'P - k'P - PA - Q1 

(2 .ma) 

(2 .Ub) 

f ( T )  = 0 (2  * U C )  

We note here tha t  the optimal control law is  a l inear  time varying 

function of the s ta te  variables. The vector function g ( t )  i n  the  control 

law does not depend on the i n i t i a l  s t a t e  of the  system, but only on the 

input v ( t ) .  

usually not possible. 

by integration, i n  backward time, s ta r t ing  a t  t = T. 

Analytic solution t o  equations (2.81, (2.9) and (2.10) is 

However a computer solution can easi ly  be obtained 

The infinite time regulator problem for time-invariant plants is a 
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special  case of the  above, where, matrices A, B and 

C [O]j &z [O] and T 4 OD. Solution t o  the inf ini te  

problem is given by 

where P sa t i s f ies  the matrix Riccati equation 151 

PBB’P .. A’P - PA - % = IO] 

are constant, and 

time regulator 

(2.14) 

Equation, (2.14) can be solved by spectral  factorization o r  backwards 

integration with P(=) = IO], till P reaches a steady s ta te .  

2.4 Choice of the Performance Index 

From the design point of view, the choice of the performance index 

is a controversial issue i n  the theory of optimal control. 

case,; a control engineer would l i ke  t o  find a functional relationship 

between the plant and control parameters and classical  performance 

specifications. 

specification can be achieved directly by adjusting the control para- 

meters. 

possibly for  second order time-invariant systems. A different but 

In the idea l  

In  such a case the design objective of meeting the 

However th i s  i s  too ambitious a goal t o  be achieved except 

equally ambitious notion i s  t o  find an analytic relationship between the 

plant and the performance index matrices as  defined i n  (2.4) and (2.5) 

snd the performance speciflcations. If it were possible t o  accomplish 

any of these objectives, then a p t i h l  control theory Mead truly provide 

a synthesis tool. 

judgement and experience must continue t o  play an imgortant role  f n  the 

design procedure. A judicious choice of the performance index parameters 

can only give a good s t a r t  t o  the design process. 

However since t h i s  is not the cese, a control engineer’s 

I 
I 
I 
I 
I 
I 
I 
I 
I 
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I 
1 
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Many control problems are characterized by the necessity of sat-  

isfying 

cases a 

venient 

multiple performance requirements and constraints. 

performance index of the type given by (2 .5)  would be very con- 

t o  use. 

In such 

In a majority of cases % can be taken as constant. 

Then the designer's job i s  essentially t o  select  the  elements of &1 which 

are  the  magnitudes of the  weighting factors.  

choice, the succeeding choices for &1 can be -de i n  a logical  fashion 

based on the result ing system response. 

manner. 

f l i c t i ng  requirements could be a very d i f f i cu l t  task. 

A f t e r  the first arbitrary 

&2 can be selected in a l ike  

When frequency domain methods are used compromise between con- 

It is hoped tha t  as  one gains experience i n  analyzing and designing 

control systems using optimal control theory, skepticism as t o  the  meaning 

and worth of a quadratic performance index, o r  per fomnee  index i n  

general, will be of minor concern. 

2.5 Instrumentation of the  O p t i m a l  Control 

Porn equation (2.7) we note tha t  for implementation of the optimal 

control law, i n  general, all the s t a t e  variables of the system must be 

accessible for  measurement. Alsog t h e  i n s t m e n t a t i o n  ca l l s  for time 

varying feed-back gains, except for autonomous system with in f in i t e  time 

performance index. This, from a technical, economical and r e l i ab i l i t y  

point of view, is a severe requirement. 

control problem is reformulated so tha t  the result ing controller i s  time- 

In the next chapter the optfmaP 

invariant and amenable t o  instnunentation even if a11 the s t a t e s  are not 

accessible, 
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CIIAPTER 111 

GFECIFIC OPTIMAL CONTROL 

Introduction 

The choice of the performance index (2.5) is based on two important 

consideration6 i) Incorporation of performance specifications in a 

compact form. ii) Mathematical tractabiPity of solution to the opthmal 

control problem. Athird equally important consideration which is aver- 

looked here is: Can the resulting controller be conveniently fabricated 

and put into practice? As it was remarked earlier, the opt- controller 

often does not satisfy the third consideration. 

optimal controllers has led to the investigation of so-called "specific 

optimal controllers" (SOC) . 
the convenience in computation and instmentation of the controller end 

the degradation of the system perfonaance when compared with the optfmal, 

This short-coming of 

t !he basic philosophy is to compromfse between 

3.2 Review of Recent Work on SOC 

The concept of specific optMzation is not new in the literature. 

Wiener's 163 design of specific optimal filters for communication networks 

is an example. m e  analytical design of feedback control by Newton, Gould 

and Kaiser El] is along the seme lines. The basic problem considered by 

tSOC will be used interchangably for specific optimal control and specific 
optimal controUer(s) . 



these authors is: Ctiven the input and ideal output as transient fZxnctions 

of time and given the configuration o f t h e  control system f’ind the values 

tha t  the control parameters should have in order t o  miliimiae the integral-  

square error .  

suggested. According t o  the  first one s t a r t s  with the Fourier Transforms 

of the input and i dea l  output signals, and evaluates the  integral-square 

- 

Two different approaches fo r  solving t h i s  problem are 

e r ror  as an analytic function of control parameters by means of Parsevalqs 

theorem. Then the parameters are determined by using standard minimization 

procedures . 
According t o  the other approach tho integral-square e r ror  i s  t reated 

i n  the time domain by introducing autotranslation and cross-translation 

fZxnctions of the input and the idea l  output. If Ol(t) and e,(t) denote 

two arbitrary transient signals, then the autotranslation function Ill( T ) 

i s  defined a13 

and the cross-translation f’unction is defined as 

+a 

(3.2) 

!he principal reason fo r  introducing the t ranslat ion functions is t o  

simplify the writing of expressions tha t  involve definite in tegra l  of 

product of transient signals. 

(impulse response) w(t), input e2(t) ,  idea l  output O,(t) and actual  output 

e o ( t  ) . 

Eor a system with weighting function 

The error i s  given by 

4 % )  = el(t) - e 0 w  (3.34 
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It is  shown i n  (11 tha t  the integral  of the squared e r ror  wer in f in i t e  

time i s  given by 

This i s  the desired result f o r t h e  integral-square e r ror  evaluated i n  the 

t i m e  domain. By minimizing I, a f t e r  simplification, w i t h  respect t o  the 

control parameters, t h e i r  optimtnl values can be determined. 

!he two approaches for solution stated above are seemingly straight- 

forward. However i n  practice the  determination of the integral-square 

(error  a s  a function of control parameters, except for a f e w  simple) 

cases, i s  a very tedious task.  The authors are aware of t h i s  diff icul ty .  

Even though the  method of analytical  design i s  no$ computationally 

feasible, it did pave the way for var ia t ional  method i n  the  area of 

feed-back control theory, which by i tself  i s  of great value. 

More recently Agarwal (71 has investigated an SOC problem tha t  can 

be s ta ted a s  follows. 

Given the plant 4 = t(x,u) with i n i t i a l  s t a t e  x(6) = xo, and the 

coritroller configuration u * h(y,b), deternine b sdch t ha t  
T s q(x,u)dt i s  minimized. 
0 

Here y is  a p-dimensional vector whose conponents 'are known functions of 

x, p 5 n; b i s  a q-dimensional constant vector of unknown parameters and 

x, +, cp and u are as defined i n  Chapter 11. 

i) cp(x,u) 2 o for  a l l  values of i ts  arguments i n  the domain of in te res t  

and ( i i )  C possesees piecewise continuous second p a r t i a l  derivatives with 

It i s  assumed tha t  
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respect t o  i t s  arguments. 

problem are  considered 

Three different methods of solution t o  th i s  

1) Parameters optimization 

2)  

3) Method of different ia l  approxtmation 

The application of these methods i s  rather formal and without much 

%r instance, i n  one 

!&ansformation t o  a two-point boundary value problem 

consideration of- complexity and l imitations.  

of the examplest considered, a transformation t o  a tWo-pOint boundary 

value problem i s  made t o  determine the unknown peirameter vector b. The 

example is  as follows. 

Given the plant (fl- 3.1) 

fLz 1= ' 2 5  - 325 + u 

performance jsaex 

1.0 
I = (4 + 4 + u z ) d t  

0 

. 
or  u = -  2Ou + (b1+20b2) < + 20b15 

(3.7) 

find bl and b2 such t ha t  I is  minimized. 
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Flgure 3.1 A Linear Plant with a Specif'ic Controller. 

In order t o  solve th i s  problem two more d i f fe ren t ia l  equations 

i) i1 = 0, ii) 1;2 = o arc ad&ea, This set of five di f fe ren t ia l  equations 

is a w n t e d  by a set  of five Lagrange multiplier equations 

h4 = -205h3 - %h3 

. 
h5 = -20x325 

w i t h  boundary conditions 

Ai@) = 0, i = 1,2..,5 

(3 .94 



!&e ten differential  equations i n  ten variables tbus obtained are solved 

v i a  the method of quasilinesrization 181, and the solution i s  

bl ~f -0.0556 

is possible t o  determine u(0) directly. Huwever it depends on the se~uence 

i n  which switches 81 and 82 are closed. 

S1 is  turned on at t = 0, .tJicn u(0) can be detcdbed by application of' 

the i n i t i a l  vaue t h e o r h  of Iiaplace trrlpsfonas t o  equation (3.7). We 

If 82 is closed permanently and 

i S  

Using bl and b2 in equation (3.11) ane obtains 

On the other hand if S1has been on for a long t ime and S2 is closed 

at t = 0, then application of the final value theorem of Laplace trans- 

forms t o  equation (3.7) yields 

- 

and agsin using bl as in equation (3.11) 

u(0) - -.u C3.15) 

Both equations (3.13) and (3.15) are i n  grass contradiction w i t h  the 

value o f  u(0) in equstion (3.11). Berring the possibi l i ty  of ccllsputetional 

error there arc a t  l ea s t  two reasons for  this inconsistancy: 

1 )  NO cansideration i s  given t o  the order i n  vhich switches s1 and 

Sz arc closed. 
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2 )  The two point boundary value problem i s  nonlinear i n  nature 

and as  such the solution is not necessarily unique. 

Even i f  the correct values of the control parameter vector b can 

be obtained using the methods mentioned i n  671, the values so determined 

depend upon the i n i t i a l  s t a t e  xo. If the samc controller is used for  a 

different set of i n i t i a l  conditions, then it is  not possible t o  give an 

estimate of the deterioration of the restilting system, as comgared t o  

the optimal. In order t o  alleviate th i s  problem Agarwal proposed tha t  

the worst initial condition 
T 

0 

with respect t o  xo. It was 

be determined by maximizing 

assumed that xo l ies i n  e compect subset of 

the s t a t e  space. However the computational methods used t o  fYnd the 

worst (maximizing) i n i t i a l  s ta te  yield o w  a loca l  solution, a~ such 

the possibi l i ty  t ha t  the Bystemmay perform worse than predicted s t i l l  

exists 

A comparison with the procedure outlined in Chapter V woula i U u s t r a t e  

the degree of complexity of the above method even i f  fts other short- 

ccanings are ignored. 

Rekasius 191 and Kcdvurriemi [lo] have res t r ic ted  themselves t o  a 

l i nea r  time-invariant qystem and carried the SOC problem closer t o  a 

usable solution. A discussion on these references is postponed u n t f l  a 

formal statement o f t h e  SOC problem is made l a t e r  i n  this chapter. 

A completely different approach t o  the problem of dealing with the 

inaccessible states,  which i n  turn results in fnstrutuentation difficulties, 

i s  t o  estimate these s t a t e s  i n  real time f+rom the wai lab le  data. 



Extensive research ha8 been p e r f o m d  on this torpic Ill, 12, 13, 14, 21 

und various useful results obtained. In maay pract icel  appllcetions 

nevertheless estimation of inScces8ibh s ta tes  IMW not be desirable frogl. 

a technical. or an econmical point of view, part icular ly  i f  a aimale 

techni~ne c8n do ahwet the same job. 

3.3 Statement o f  SOC Problem 

Br a n~~aningM comperison between specific opt- and optimal 

c a t r o l l e r e ,  the primary performance index as deflned i n  (2.2) needs t o  

be modified. 

Let the desired canflguration of the control lav be given by 

uB = h(2,k,t) (3.17) 

where us in an 5-vector, m 5 n, 4 is a pivector of the accessible s ta tes  

of the system as defined i n  (2.1), p 5 no k is an unknown psrameter 

vector. &fine an intermediate performance index 

T 

!be specific optimal control problem cen n m  be stated a8 i ~ o w 8 .  

a w n  the plant (2.1) rad the initid s ta t e  x(to) - xo, primary 

prformnce  index JL, i n t e m d i a t e  perfornsnce index J2, find tlie 

unknown parameter vector k such that 

is  the admi8,sibh se t  of parameter vector k and Sx the admi6rible 

1. 4 Bet’ of initia1l9h&es. xo4 

rfonnance inde5 J* has the built-in feature Of The secondam pe Q 
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comparison between the perfonaance of %he SOC system and the optimal 

system under worst circumstances, which  i s  so important i f  the 

problem is t o  be meaniI@Arl. &r the solution t o  be meruiin&fU. however, 

a global aavdmiadtion with respect t o  xo is meadat6ry. 

3.4 Additional h m e n t s  on Eief'erences [g] and ElOI. 

We problem formulation a8 given a b m  with us a linear canbination 
- 

of the accessible s t a t e s  and T = -, is  due t o  Beksrsius [y] . H e r e  a solu- 

t i o n t o  a second order constant coefficient linear stawe s$'stem with 

quadratic performance index and one accessible s t a t e  Variable for  feed- 

back, was presented. The approach used is  not general enough t o  handle 

higher order systems with m r e  than one feedbeck coefficient t o  be deter- 

mined. Also if the second order system is not stable and cannot be 

s tabi l ized by feeding back the accessible states,  then a solution t o  the 

problem does not exist. 

Koimniemi's formuhticm (103 is a variation of Rekasilrels. A major 

difference lies in  the problem t i m e  which i n  t h i s  case i s  f in i t e .  

performance index (secondary) chosen is 

The 

min IUBX (Jz - Jl) ( 3  .20) 
k xO'sX 

A cortlputational algorfthm is suggested for a liftear tithe-varying 

wXth quadratic performance illdex. 

by first m o v i n g  i n  the positive gradient direction of (Jz-Jl) with 

respect t o  x0,i and then negative gradient direction with respect t o  k. 

Once again the maximum With respect t o  xo obtained i n  t h i s  fashion is  

not necessarily global. 

Although s ta l i i l i ty  i s  not required because of the U t e  tenhinal t i m e ,  

system 

A specific o p t W  solution i s  obtabrled 

This is a severe drawback of this approach. 
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appl ica t im of t h i s  approach t o  rrystens whlch cannot be 6t8bmZed by 

aere f!'eedback of accessible btates w a u l d  rt6d.t in a poor des*. 

numbericel examples dre given in t h i s  reference. 'we eolutionr t o  these 

'Fvo 

exmnpler will be di6cuSEed i n  Chapter V. 

It should be noted here tha t  the performance edex (3.20) i s  not 

a s  reasonable as (3.19). Zbr instance consider the case when 
* *  
Jl(x ) - 1.0 

(3.214 
* 

and J~ - J~ = 0.5 

* .E 
where x i s  the worst i n i t i a l  s t a t e  and k the best value for the pare- 

meter vector. Now it i s  conceivable tha t  for  8ome other i n i t i a l  s t a t e  
1c. 

xesx 

J;m = 0.5 

* 
J~ - J~ = 0.3 

Since the difference i n  the second case i s  less then 0.5, t h i s  according 

t o  performance index (3.20) is acceptable. 

normslized deterioration for the worst i n i t i a l  s t a t e  i s  5O$ and for an 

However we oee tha t  the 

arbitrary i n i t i a l  s t a t e  it i s  Bo$! 

3.5 Observations 

Based on the study and evaluation o f t h e  past  work on the SOC problem, 

the following important observations can be made. 

1) For the appraisal of an SOC eystem,solution of the optimal 

system is necessary. 
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2 )  The unknown parameter vector k of the specific controller depends 

on the i n i t i a l  s ta te  o f t h e  system. A specific optimal controller 

w c i d  be acceptable from a Ciesign point of view ojLy i f  the system 

performance under worst i n i t i a l  conditions for  the chosen con- 

t r o l l e r  i s  acceptable. 

It i s  highly desirable that the configuration of the specific 

controller be such tha t  the result ing system is  guaranteed t o  

be stable.  

Computational methods need t o  be developed t o  determine the 

- 

3) 

4) 

worst i n i t i a l  s t a t e  of the system, for  a given controller con- 

figuration . 
With these observations i n  mind, a l inear  specific optimal. control 

problem is considered i n  d e t a i l  in  the next chapter. 



JJImAR SPECIFIC OPTIMAL CONTROL PROBtEM 

4.1 Problem Statement 

Consider the plant 

k = A(t) x ( t )  + B(t) u ( t )  + C(t) v ( t )  &.la)  

(4 .lb) 

and the primary performance index 
T 

where 

Xt n-vector of s ta te  variables 

U: m-vector of control variables m 5 n 

ITT: 

A(t): nxn matrix 

B(t): 

r-vector of input variables r 5 n 

nxm matrix,pair [A,B] is  completely controllable and completely 

observable on the interval [to,T] 

llxp matrix, pair  [A,C] i s  completely observable on the internel  C(t): 

[t,, TI 

%(t):  nxn matrix, a t  l eas t  positive semi-definite on the interval  

Ito, TI 

s: nxn constant matrix, a t  l ea s t  positive semi-definite 

In  addition let the desired configuration o f t h e  controller be 



u - h(s,K,t) 

where 

- - .  
0 
0 

B -  
0 
1 

. . 

c .  

(4.3) 
L 

A x: p-vector of the accessible states,  p 5 . n  

K: mxn matrix of unknown control parameters 

men the intermediate performance index i s  given by 

T 

(4.4) 

!!he specific optimal control problem is t o  find the control paremeter 

matrix K and i n i t i a l  s t a t e  vector xo such tha t  

f f*'(t)q(t)xlc(t)*u+'u+lat + XW'(T) C$+(T) 
t -  - ,  - .  

(4.5) 0 

where on x(t), u ( t )  and J1 indicates the  optimel solution without 

any rest r ic t ions on the controller configuration, 

sets of xo and K respectively. 

Sx and Sk are admissible 

4.2 Some Simpjli fications 

First we shall consider the  case when u is  a scalar, = 0 and the 

Later the resul ts  Plant i s  time-invariant and i n  phase variable form?. 

'A plant = Ax+& with  u a scalar, i s  said t o  be i n  phase variable form 
i f  A and B are of the following form. 

0 

1 
0 
b . 
b 

6 

0 . .  
1 . .  . . 
b . 
6 

. . 
e . . 
(i 
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w i l l  be extended t o  the general case wherever possible. 

of generality it cdn be assumed t h a t  Gi = xi, i d , 2 ,  . .,p, and tha t  

X 

Here without loss 

p+l, x ~ + ~ ,  . + . x are int3ccessible s t a t e s ,  The following specific con- n 
t r o l l e r  WWL be used, 

(k +kp+ls+. . . . . . +k snmp) 
x (6) (4.6) n + n-p-1 .n-p p ai”zs+. 0 0 .+a n-p-1 s +8 . _  

where *s) i s  the Laplace transform variable. 

i 4 2 ,  . .,n-p-1 are arbi t rary parameters . 
For the time being ai, 

note tha t  instead of merely feeding back the accessible s t a t e s  with 

constant coefficients, a dynamic equalizer i s  used, which hopeArL3y w i l l  

generate approximate higher derivatives of x 

Since the above SOC is  nore general than the one considered i n  191 or  

the inaccessible s ta tes .  
P’ 

[lo], an improvement i n  the  performance should be expected, In addition 

i f  the parameters ai and ki are chosen carefully, the result ing system 

can be guarmteed t o  be stable,  This is shown in the next section. 

4 . 3 Stabi l i ty  Consideration 

The plant different ia l  equation (4.1) with the  simplifications 

s ta ted  i n  section 4.2 can easi ly  be Laplace transformed. 

plant t ransfer  function, then 

If G(s) is the 

(4.7) 

If the plant can be stabil ized using a controller of the type (4.6) 

with p = 1, then s t a b i l i t y  of a system with p > l  follows automatically. 
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Consider now the case of one accessible s t a t e  when the controller (4.6) 

reduce8 t o  

The additional negative sign i n  equation (4.8) is for the rake of con- 

venience. It doeo not change the net* of the problen. "he resul t ing 

system i o  shown dia&ramatical;lg i n  fig. 4.1, where 

%+%s+. . .+hamla n-2 +kn8 n-1 

ad = 11-2,~n-l 
a p 2 S + .  . . wn-ls 

(4.9) 

For the mment assume tha t  both switches S1 and S2 are clO8ed. 

characterist ic equation of the system i s  given by 

The 

1 + a(8) E(8) = 0 (4.10) 

If G(s) = &i~ and H(s) = ' ~ p  where Gl, G2, H1 and Hz are polynomials 
(3 ( 8 )  H l ( 4  

2 
i n  8, then by rather obvious manipulations it can be shown t ha t  

O Z H Z  0 2n-1- j, 0 .+fn_1an*(S) 
Y 

- (4 .u )  



where 

fo 1 

and 

. . 

where pl , j 4 , n  are known functions of 

the characterist ic equation i s  reduced 
3 

J 

(4.13) 

i=l,n. Hende “n,i an-i+l’ 
t o  

i=o i =l 

The terms i n  equation (4.14) are arranged i n  decreasing power of s. 

There are 2n terms i n  t h i s  equation with (Zn-1) arbi t rary parameters 

(n k.’s and n-1 ails). &y iizsppection of (4.12) it is obvious tha t  h 

choice of an Therefore by choosing 

QS, 3 = n-1,n-2, .,l, with j decreasing monotonically, fl, . .,fnal can 

be forced t o  take any desired set of values. 

e f f i c i en t s  of s , B=n,n+l, ..., 211-2 i n  the characterist ic equation can be 

chosen independently of each other. Once t h i s  is  done pi, id, .,n are  

known numbers 

pletely determined by kB+l, B=O, * * *,n-l respectively, 

1 

affects  only f , j = C , i + l ,  *.+,n-l. 3 - 

This means t h a t  the co- 
1 

B But then the coefficients of s , b0,1, . . .,n-l are com- 

Berefore  the 
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coefficient of each term (except the first) i n  (4.14) can be adjusted 

independently t o  force the character is t ic  equation t o  possess roots with 

negative r e a l p a r t s .  Hence the  system can be s tabi l lzed by a proper 

choice of the SOC parameters. 
- 

The above argument i s  eqiually val id  fo r  multivariable the- invar ian t  

systems. 

known a t  present, so not much can be said about the s t a b i l i t y  of time- 

varying plants with specific controllers. 

libr time-varying system no general theorems of s t a b i l i t y  are 

The emphasis here i s  on the use of dynamic equalizers. There is  no 

par t icular  reason t o  r e s t r i c t  oneself t o  the specific configuration of 

(4.6) tis long as the resulting system i s  stable.  

versed i n  c lassical  control theory knows many different  ways t o  choose 

an eqyalizel' t o  meet cer ta in  specifications for  a given problem. This 

eae r i ence  can be exploited advantageously t o  design by the approach 

presented i n  th i s  thes i s .  

uration, the direct  computational method introduced i n  the next chapter 

can be used t o  determine the unknown parameters, especially i f  the usual 

graphical methods turn out t o  be very tedious. 

4.4 Secondary Performance Index 

A control engineer w e l l  

After a selection of the controller config- 

I n  t h i s  section the secondary performance index (4.5) f o r  a mUrti-  

To start variable time-varying system I s  reduced t o  a convenient form. 

with it w i l l  be assumed tha t  all the  s ta tes  are  accessible and v = 0. 

Later these assumptions will be relaxed. 

If all the s ta tes  are accessible, the specific controller can be 

taken as 

US(4 = Kx (4 -15) 
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where K i s  an (mxn) m a t r i X  69 constants, 

i n t o  equation (4.1), with Y = 0, we get 

Substituting equation (4.15), 

i ( t )  = (A+BK) x( t )  (4.16a) 

= xo (4.16b ) 

and 
T 

= x'(t)[Q ( t )  + K'K):x(t)dt+x'(T)%x(T) (4 -17) 
J2 1 

Since (4.16) is a l inear  autonomous d i f fe ren t ia l  equation and J2 a 

quadratic Rurctional. J2 can be written as 

J2 = x'(to)R(to)x(to) (4.18) 

where R is an (nxn) symmetric matrix which is  the  solution t o  

+ (A+BK)'R + R(A+BK) = - [ q ( t ) -  +'K'kI (4.198) 

R(T) = qz (4 Jgb) 

Woh t h e  resul ts  of Chapter I1 de know tha t  

J1 = x;p(to)x(t,) (4.20) 
I 

where P satisfies the matrix Riccati d i f fe ren t ia l  equation (2.8) with 

boundary conditions P(T) = % a  Hence 

(4 .21) 

If the input v f 0, then Jz w i l l  be a more general quadratic function 

of x, namely, 



J2 = x'(to)R(K, t o ) x ~ ~ o ~ ~ ' ~ ~ ~ o ~ + ~ ~ ~ o ~  (4.22) 

where R i s  as denned before, the n-vector 2 and scalar  'P are solutions 

to 

+ (A+BK)s+2RCv = 0 d t '  

with Z(T) = 0, ?(T) = 0.  (4.25) 

Equations (4.23) and (4.24) ,are determined by different ia t ing (4.17) and 

(4.18), with to replaced by t, and equating the coefficients of like terms. 

Again f r o m  equation (2.6) 

/ * min max x'Rx+&+'? 
Jo = IC&$ X o d x  X'PX + g'x + f (4.26) 

When all the states fo r  the plant are not accessible, the secondary 

perfonaance index can s t i l l  be shown t o  have the iame form as (4.21) or 

(4.26) Once again suppose the plant i s  i n  phase variable,  form, u is a 

scalar and there i s  only one accessible s ta te .  Let u,(x(t)) sa t i s fy  the 

following different ia l  equation. 

d2us dn-'u 8 dx1 
+ 72 ht2 +...+ 7n-1 - = vi+%?# dt +*.- 
- d'S 

us + at dt"' ' 

-n-l 

(4.27) 
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Let  

y1 = 

- o)-*****-s 
at”-3 

% at 

(4 28) 

. 
pl 

Yn =-(u atn-l s 1 

Then (4.28) can be written as 



Equating the coefficients of l ike  parers of s i n  equation (4.29), we  get 

. . 

System (4.30) is l inear  i n  the yi(o) and %(o), and the  coefficient 

matrix of yi(o), i=l,2,. ..,n-l i s  an (n-l)x(n-1) tr iangular matrix with 

all the major diagonal elements equal to vn - Hence each yi(o) can be 

determined as a l inear  combination of x (o), j=l,2, ..,(n-l). 

solution is  given by 

L e t  the 3 

If the i n i t i a l  conditions are ignored i n  equation (4.28), ,then - 

(4.32) 

The relationship between ai and Ti is obvious. 

In  the above diecuslsion it is t a c i t l y  assumed tha t  the plant and 

the controller are  separate unite, and the two are joined together a t  

t4. 

pmmnently and S1 is  closed a t  t=O. 

the  controller is en integral  part of the system and hence permanently 

With reference t o  flgure 4.1, t h i s  means t ha t  s w i t c h  S2 is  on 

In e feedback control system hawever, 
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coupled t o  the plant output. Hgure 4.1 simulates t h i s  second mode of 

operation if we assme t ha t  switch s1 is closed permanently and s2 is  

turned on a t  tPO.  Under this arrangement, i n i t i a l  values of u and its 

derivatives can be obtained by applying the f i n a l  value theorem of Leplece 

I 
~ ( o )  a us = 0, *..,nd 
at 

Using the ssme notation as above, c is in perticuler given by 

6’ o.....o] 

(4 .33 )  

(4.34) 

B e  foUaring discussion is equelly valid for the two modes of operation. 

For generality tb is being replaced by to. 

The variables yi id, . . .,no1 setis$. t H e  following set of d i f fe ren t ia l  

equations . . 

. . 

I n i t i a l  conditions on the yits are given by (4.3) or (4.34). 

Define a (2n-l)-vector z t o  consists of n components oi x and (n-1) 

cmpcments of y, 

41 = [.‘*I 
Y 

(4.36) 
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Then the system differential egUatiQn can be written ae 

. 
Z =  

or 

1 0 .... 0 0 0 0  0 .............. 0 0 
0 0 1 .... 0 0 10 0 .............. 0 . . . . . . . . . . . . . c 0 .  . . . . . 
0 0 0 .... 0 1 * o  0 .............. 0 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

a 

. 
0 0 0 .... 0 0 : 0  1 0 ....... 0 

. . 
e . 
b 

. ....... * .  0 . . . . . . . . . 0 .  . . . . . . 
* . . .. 

0 '  

. . 1 0 

0 

. . . . . . . 
0 0 0 * . .e  0 0 1 0  0 0 ....... 1 

A . 
z = A z  

The intermediate perforunce irdex Jz becomes 

T 

0 
t 

where 

A 

Ql 
P 1:. 

and 
I"' 

. rei 1 
. . . . . . . .  . 1 0  e . .  0 . 0 0 ..* 0 

0 0 0 . .  0 4 . .  
. * .  

e .  

............. [ : ::: 1 

a 

(4.37) 

(4.38) 

(4,391 

(4.40) 

(4.41) 
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Equations (4.37) end (4.39) are similar t o  equation6 (4.16) and (4.17) 

respectively 

(4.42) 

!&en 

But 

L 
i. : I  BZ2 

i 42 ...... 
' A  

(4,431 

(4 .b4) 

, ,  , ' 

Hence 

(4 047) 
min max 

x'(t,) Px(to) J* = 
(? Xi'sk Xodx 

The approach used here t o  show the invariance of the form of the secon- 

dary performance index when a dyneunic equeUxer is used is elso valid 

for the came when u is not a scaler and Y { 0 .  

We note in 

t i m e  invariant, 

equal t o  zerol 

parsing that i f  the plant Bnd fhe performance index are 

with 

Hence A must be determined from 

- 103 and v = 0, then R i n  equation (4.19) is 

(A+BE)'B + R(A+BK) = -[%+K'E] 

A solutlon t o  this equation exists only when 

(4.48.) 



0 

i s  f in i te ,  which will be the case if the CoBbtrel parWeter8 112% chosen 

such that the resulting eystelu i o  8table. 

controller use6 in t h i s  study, eolution to (4.48) I 8  guarantees. 

80, for the type 09 rwcriflc 

4.5 Basic Computational Problem 

The solution to  a l inear specific o p t i d  control problea i s  reduced 

t o  finding a saddle point of a ratio of two quadratic forms. 

tional procedure I s  diecussed i n  the next chapter. 

!Fhe colaguta- 
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CUPTER V 

COMPUTATIONAL ALGORITHM AND APPLICATIOHS 

5.1 Development of the Computational Method 

Tile problem e t  hand i s  t o  find K and xo such thsL 

d - c r c  P 2nd R sat is@ eauations ( 2 . 8 )  end (4.19) respectively. In -:;:e 

Like1 case one would l i k e  t o  determine the global maxiram s:? 

( 5 . 2 )  

with respect t o  xo by finding the maximizing i n i t i a l  s t a t e  as  an analytic 

i?r;lction of the cort rol  parameter matrix, sey 

:: = g ( K )  . ( 5 . 3 )  
0 - 

I f  the global naximum thus found i s  Jo, then 

(5.4) 

* 
The next and the f ina l  step i n  finding Jo would be t o  d.etermine the mini- 

mum, possibly global, of : with respect t o  K .  It should be emphasized 
0 

here tha t  the need for global maximum is much greater than the  need for  

global minimum. I f  the minimum i s  not Global  it only implies tha t  a 



performance. Hawever the lack of globalaoaldmum leaves open the possibi l i ty  

of drestically poor performance under some i n i t i a l  e t a k s .  

Unfortunately any analytic solutions for  the abwe problem, except 

for  a few simple cases, are i ~ ~ 0 6 S i b l e .  h e  must resort t o  numerical 

techniques as the  only alternative.  Bn obvious choice of a nunmrical 

technique would be a gradient method where one p e r f o m  the operations 

of finding e & n h m  and B maximum 8ucceissively. 2?he coanputational steps 

may be described as  follows. 

l a .  &xes8 an i n i t i a l  value of xo and K 
1 lb. Determine mex Jo(x0,K) - <(xo,K) 

xO 

3. 

4. 

Since Jo is not concave i n  xo and cowex i n  K, it is  very l i k e l y  

Determine max %(xi,&) = J:(X:,$) 

Repeat steps 2 and 3 till < - <'l 

xO 

t ha t  JZ > 2. If the m b h u m  and the  maximum are t o  be computed seqyen- 

tially, lit i s  essent ia l  tha t  the succeesive ;nraXfiaQ decrease monotonicall;ys, 

in particular J: 2 <. In order t o  establish under what circumstances 

t h i s  c m  be achieved, consider the 'paylor erariee expansion of <(xo + Bx, 

K f BK) about (xo,K),  where bx and BE are increments of order A, e mall 

0 

1 

number, in xo end K reepectively. 
- -  

( 5 . 5 )  
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where 
I 
I 

I 
I 
I 
I 
I 
I 
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I 
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I 
~I 
I 
I 

a 3  )... - “ 1  a 3  a 3  0 a 3  0 - o h  - column [ bxol‘ - 
ax, aXo2 ’ 

a 3  a 3  
,-” ] 0 

aKm,n-l aKmn I 

m n a 3  
i d  jd i j  

($)6K a 3  A = C C ( z& 6Kij) 

(5.7) 

(5 .9)  

If 6 K  i s  chosen t o  minimize <(x;,K+GK) and 6x t o  maximize <(x;+~x,K+~K), 

then 6K must be i n  the direction opposite t o  a<(Xo’K’/aK and 6xo i n  the  

same direction as ~ ~ ( X ; , K + ~ I C )  /axo. Hence 

1 

6 K  < o - 
and 

I n  addition i f  

then 

( 5  013) J ~ ( ~ ~ + G ~ , K + ~ K )  1 1  < J-&~,K) 1 - - ,  

But S ( x l , K )  i s  the maximum of Jo(x0,K) w i t h  respect t o  xo, which implies 
0 0  
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t h a t  

Hence for  a sufficiently small A, the inequalit ies (5.12) and (5.13) are 

true,  unless aJo(Xo,K)/aK i s  also equal t o  zero, in-which case (xo,K) 1 -  1 1  

yields the desired solution. 

Therefore i f  (5.1) i s  t o  be determined by performing a series of 

minimization and maximization operations, then i n  order for  the process 

t o  converge, it is important tha t  dur ing  each maximization operation the 

global (because of reasons stated ea r l i e r )  maximum be found (which assures 

tha t  the gradient of Jo with respect t o  xo i s  zero) and during the mini- 

mization operation a modest change i n  K be made i n  the direction opposite 

t o  aJo/aK. 

5.2 Geometric Interpretation 

In equation ( 5 . l ) ,  for a given value of K, the numerator and the  

denominator, when equated t o  a constant, both represent e l l ipsoidal  sur- 

faces i n  an n-dimensional s t a t e  space. Suppose 

sX = {x 0 0  Ix '  P(to)xo = l}. ( 5  J5a 1 

For a typical two dimensional case, t he  surfaces (e l l ipses)  represented by 

x; P(to) xo = 1 ( 5 9 w 3 )  

and 

x: R(K,to) xo = constant ( 5 J W  

are  shown i n  figure 5.1. The dotted e l l ipse  corresponds t o  (5.1%) and 

the ellipses drawn i n  solid l i nes  represent 

x; R(K,to) x0 = X 
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for  various values of‘ the constant h(hi+l > Ai) Obviously the e l l ipse  

corresponding t o  A 4  is the largeut  that hen a point i n  cornmoll with 

(5.15). 

Jo with respect t o  xo. 

+ xo. 

iniinitely many point8 of tangency, which  yield the same (global) maxi- 

3 
Therefore for Sx defined by (5.15), A is the maximum value of 3 

me points of tangency are the  maximizing s t a t e s  
..) 

Por a higher dimensional case it is conceivable tha t  there are - 

mum value of Jo. Of course i f  Sx is  changedto 

where y i s  8 constant, then the maximizing s ta tes  are given by + Jy go, - 
B e  global merf.lllum of the ra t io  Jo, hawever, will remain the same, 

fore there is no loss of generality i n  assuming Sx t o  be constrained by 

There- 
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(5.15), even if it actually consists of the en t i re  space 8. 
h e  geametric interpretation, though instructive, does not lead t o  

e feasible method of computing the d o b a l  raerimUm of Jo and the maxi- 

mizing i n i t i a l  s ta te .  In the next section a simple method, based on the 

theory of quadratic forms, for  computing the global maximum is presented. 

5.3 G l O b i L  

The matrix P i n  equation (5.2) is real, symmetric and positive 

definite. Therefore there exists an orthogonal matrix % whose columns 

are  the eigmwectors of P 1153, such tha t  

< P q P D 2  

and 

where Dz ie a diagonal matrix whose diagonal elements (all positive) are 

the eigenvalues of P. If D i s  a diagonal matrix such tha t  3 
(5.201 

then 

where I a s t h e  ident i ty  matrix. Rote that D i s  nonsingular since P i s  

nonsingular. Le t  
3 

= % 
and xo D4Y 

Substituting (5.23) i n  (5.2) one gets 
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D 
1 
I 
I 
I 
1 

where 

(5.25) 

(5.26) 

(5.27) 

Now l e t  D be an orthogonal matrix whose columns ere the eigenvectors 5 
of S, then 

D' SD = A, e<diagonal matrix 5 5  
and 

2 2 Max * = Max z2 + x 2 +...+ Xnzn) y"y y y 2esz(1 1 2 2 

where 

(5 *29> 

and 

(iu) 4,i = 1,2, . . . ,n are  the diagonal elements of A and the eigen- 

values of S. 

If A is the largest eigenvalue of 5, then f'rom equations (5.25) and (5.29) m 
it i s  obvious that 

, -  

And if go i s  the maxLmizing vector, then 

where 
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- zi = 8irn, i = 1,2, ..., m, ..., n (5.33) 

I n  other words 

(5.34) 
w 

XO+ 

where f i s  the eigenvector of s COrreSpO~ding t o  i t s  mth eigenvalue. 

tibus the problem of finding the global maximum of Jo involves finding 

the  eigenvalues and the  eigenvectors of P and the largest  eigenvalue and 

the corresponding eigenvector of S as deflned i n  (5.26). 

puter programs are available for  computing the eigenvectors of a r e a l  

symmetric matrix, so an algorithm for finding the transformation matrix 

% as deflned in (5.22) w i l l  not be discussed here. 

can be used t o  find the  largest  eigenvalue of S. 

i n  section 5.1, t h i s  needs to' be done repeatedly. 

able t o  have an algorithm which specifically finds only the largest  eigen- 

value end the corresponding eigenvector of a real  symmetric matrix. 

en algorithm based on &ddeevals 1161 presentation i s  given below. 

Standard corn- 

tibe same programs 

However, as stipulated 

Therefore it i s  desir- 

Such 

5.4 Determination of t he  Laxest Eigenvelue of Q Symme t r i c  Matrix 

Let hl, 12, ..., An be the eigenvalup, not necessarily a l l  d i s t inc t ,  
1 :  

of the matrix S, arranged ia the oraer of diminishina; magnitude. 

s i s  symmetric, there edstrr a set of e~nmtetom (normalized t o  uni t  

Since 

length) El, E2,. . .,En, such t ha t  an arbi t rary vector Vo can be expressed 

as a l inear combination of Ei, i=1,2, . . .>n. Let 

(5 0'35) 

where the numbers yi are conrtante, some of them perhaps zero. 

Form the sequence of vectors 
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Y1 w i l l  be 

Let 

. . * I  
referred-to as the Ath i terate of vector 

Since 

it follows t ha t  

SLV = y l A h  + y2X32 +...+ y A% 
0 n n n  

Vo by the 
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(5.36) 

matrix S. 

(5.37) 

(5.39) 

(5 *40) 

o r  

A1 (5.41) 
1 1 e X + y e  X ,  + . . . + y e  Y i l  = Yl il 1 2 12 2 n i n n  

1 1  Thus any component of the Ith i t e ra t e  of Vo depends l inear ly  on A1, 

. . ., An. 

YA, the coefficient of 

such a component, then one can write 

% 
A In particular i f  yl f 0, then for  a t  l ea s t  one component of 

A i n  t h e  equation (5.41) is nonzero. If yu i s  

%i+: (5.42) 
1 1 A + c A +...+ yu=ckll k 2 2  

Note tha t  the coefficient c is not a function o f t h e  index 1. 
kj 

How consider the following two cases: 
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I n  the first case 

x 
But (e) < 1, i-2,3, ..., n, therefore 

A1 lim 'k,1+1 
bo Y U  (5.45) 

If *e l a r g e s t  eigenvalue is of multiplicity r, then fkom equation 

(5.42) 

(5.46) 4 A' +... S A n .  A 
yjd = (~kl+ck2'*~~hk,)x1'+%,r+l r+l 

)/(y Hence in t h i s  case elso, the quotient (yk,h+l 

approaches 0. 

A2 being equal t o  (-Il) need not be considered hereb 

) approaches Al as 1 

Since S is a positive definite matrix, the possibility of 
k, 1 

Above it is assumed t ha t  the initial guess Vo is such t ha t  ylk.  

If y14, and y@, then a t  the first few steps of i t e ra t ion  the p r e d d n a n t  

term w i l l  be thet dependent on \ . 
computer the'term dependent on A1 will appear as a number w h i c h  w i l l  grow 

a t  a r a t e  dependent on the r a t i o  (Al/ \ ) .  If the ra te  of cowergence 

is very slow, it is advisable t o  change the i n i t i a l  guess on Vo. 

practice, the probability of picking vo such that y1d, is very small. 

men due t o  round off errors on the 

In 
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The convergence of t h e  i t e ra t ive  prdcess can be examined very e a b i l y .  

It is highly probable tha t  more than one component of El are  nonzero, In 

)/(y . )  can be compared for a l l  j such t h a t  J , A+l Jh t h i s  case the r a t i o  (y 

fo.  If  the difference between any two values of \thus found i s  with = J 1  
i n  a pre-specified amal l  number, then it i s  an indication of convergence. 

Obviously tbe l a s t  i t e r a t e  Y1+l i s  the corresponding eigenvector. 

The r a t e  of convergence can be enhanced i n  two different ways. First 

by forming the sequence of i t e r a t e s  

(5.47) 2 4 8 SV,, s vo, s vo, s vo, 0 . .  

I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 

instead of the sequence ( 5 . 3 6 ) ,  and then by forming the  scalar product 

&om equations (5.35), (5.40) and (5 .48)  one gets 

unity i n  magnitude, therefore 

Similarly 

1, 2A+1 Therefore 

(5.51) 

(5 .52)  
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If two successive values of the r a t i o  thus found d i f f e r  by an amount l e s s  

than a small prespecified number, then the convergence i s  accomplished. 

The saving i n  the number of multiplications because of using (5.47) 

depends very much on the index f A f  required for  convergence. 

then the saving is  about 5O$. 

greater. 

multiplications by an additional 5O$. 

If A i s  16, 

For greater values of A, the saving i s  much 

The use o f t h e  concept of scalar product reduces the  number of 

W i n g  the computations, it is desirable t o  normalize the i t e r a t e  
a S Vo t o  avoid undesirable growth of i t s  components. 

5.5 Minimization i n  the Control Parameter Space 

After the global maximum of Jo(=Jo(% I )) with respect t o  xo i s  
o,k 

found, the next step i s  t o  move i n  the opposite direction of the  gradient * 

of JA with respect t o  K. Since P(to) i s  not a function of K, aJA/,K 

depends only on aR(K9to)/aK, or  on a'(K9 when not a l l  the s ta tes  

are  accessible. Le t  

(5.53) 
ar  

where r i s  an element of' R and aK i s  defined i n  a manner analogous t o  
i j  a J i  - i n  (5.8). a K  

f i r s t  consider the case when a l l  the s t a t e s  a re  accessible and T i s  

f i n i t e .  F r o m  equation (4.19) 

i + X ' R + G = Q  

where 

K = (A+BK) (5 558 1 
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Since R i s  symmetric, there are bw d(n+1)/2 elements t o  be determined. 

Reayrange these n(n+l)/Z elements of R atid the corresponding element8 of 

4 such t ha t  

o r  

and fkoa (5.54b) and (5.56) 

&usrtibn (5.61) can be salved by i n t e a a t i o n  backward i n  t i m e .  Rearranging 

detenhined . 
If T = and = [ O ] ,  R is a c o n s t a t  bsatrix i n  which case r and 

br can be found by matrix imerst ion.  From e$uetions (5.59) and (5.61) ax 
one get8 

I- = ab (5.63) 



and 

ar 1 itG - a K  = G- (E - bK r ) 
If the SOC system i s  stable, then G i s  nonaingular. In general, G i s  a 

sparse matrix w i t h  only a few nonzero elements, and i t s  inverse can be 

found rather fas t  and accurately on the? d ig i t a l  computer. 

5.6 Plant with Inaccessible States 

It was mentioned ea r l i e r  tha t  the parameters Ti(6r ai) appearing i n  

the denominators of the transfer function of t he  SOC, when not a l l  the 

s t a t e s  are accessible, w i l l  be chsseu wkitrarily . Xevertheless t h e i r  

choice i s  not ent i re ly  arbitrary.  Tf ?.ta were, for instance, one could 

pick a l l  T~ = 0, then the problem -.-~f ,?*:-xssible s ta tes  i s  solved by 

differentiating the accessible eitates. This, however, can not be done i n  

practice without getting in to  some noise problems . 
The basic cr i ter ion i n  choosing ‘ri should be the s t s b i l i t y  of t he  

system. Wrt, very often, t h i s  consideration alone does not uniquely 

determine T ~ .  

width requirements on the  controller 

As a secondary consideration one can look in to  the band- 

f rom the point of view of measure- 

ment noise o r  load disturbances i n  the system. Intuit ively speaking i f  

t h e  Ti are small t h e  performance of the SOC system w i l l  be closer t o  the 

optimal i n  the noise free case. Instrumentation and noise considerations 

usually require a larger value for Ti. 

sought. 

Hence a compromise should be 

Experience i n  designing control systems by classical  methods 

would be of great help i n  selecting the Ti. 

1 a2 Once the T are  chosen, aJo/aK can be determined from a i n  a similar i 

fashion as discussed above. 
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5.7 8oC for  a Bon-eutono~wus &~tern 

~n Chapter IV, for v f 0, and p = n, it was 8hoW t ha t  

J2 X'Bx 0 0 + i 'xo + 3 
Jo=-= J1 + e'xo + f 

!he coaqrutational method for  flnding the global ma- dlecu8eed 8 b m  

does not apply t o  the maximization of Jo i n  (5 .65) .  As 8 matter of fact ,  

there seems t o  be no direct  method of finding the global maximum i n  t h i s  

case. 'Heuristically speaking one can take one of the following two points 

of view i n  the  presence of forcing functions. 

1. If the contribution t o  the performance indices (J1 and J2) due t o  

the forcing function is small compared t o  tha t  due t o  the  i n i t i a l  

conditions on x, neglect the  forcing function i n  determining the 

worst i n i t i a l  s ta te .  

2.  If on the contrary the forcing function predominates, assume the 

initial s t a t e s  are  zero, and proceed with the minimization. 

Ebr minimization, as before, one wou ld  move i n  the negative direction 
bJO aa of -. 

but also on and - where and- are defined i n  a manner similar t o  

3K' 
in tiJm. 

The gradient of Jo with  respect t o  K depends not only on s, 3K g a? & a? 
ax' ax aK - bR and can be obtained by integrating the following equation6 backward 



The case when p f n, t ha t  i s  when not a l l  the s t a t e s  are accessible, 

can be treated similarly. 

5.8 Application 

k order t o  i l l u s t r a t e  the computational f eas ib i l i t y  of the above 

numerical methods and t o  examine the nature of the resulting c&roUer, 

a few examples are considered here. A different  aspect i s  brought f o r t h  

with each example. 

tabulated on page 54. 

under worst i n i t i a l  s ta tes .  

The pertinent numerical data with a commentary i s  

The graphs on pages 56 t o  63 show the response 

Generally speaking for  a time-invariant plant w i t h  i n f in i t e  time 

peYformance index, the SOC parameters approach the optimal feedback co- 

efficients a s  the time constants ‘ti associated with the SOC approach zero. 

In the case of f inite time performance index with a l l  s t a t e s  accessible, 

the  SOC parameters are approximately equal t o  the i n i t i a l  value of she 

optimal control parameters, when the problem t i m e  i s  much larger  chan 

the  smallest time constant of the system. 

nature can be made for  time-varying systems. 

No general conclusions of t h i s  

5.9 Coimnents on the  Problems i n  Computation 

The.problems of i n i t i a l  guess and step s ize  a re  characterist ic of a l l  

gradient methods, whether used for minimization o r  maximization of‘ a 

f’unctional. 

operation, 

As one would expect they become more serious i n  the min-max 

A discussion of these and other problems of similar nature 

i s  made i n  this section. 

Consider first the choice of i n i t i a l  guess. For maximization, the 
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i n i t i a l  guess is arbftrary i n  tha t  the method yields the global maximum 

for  the current value of E regardless of the guess. However t h i s  i s  not 

t rue  for minimization. !&e general observations made i n  section 5.8 can 

be fnr i t fu l ly  u t i l i zed  t o  make an i n t e rngen t  i n i t i a l  guess. For the 

I 
i n f in i t e  time problem where the optimal feedback coefficients are constant, 

one can s t a r t  With the optimal solu.tion as the i n i t i a l  guess for  the SOC, 

with a l l  Ti's very small (even i f  they heve t o  be large) ,  Since i n  this 

case the values of the SOC parameters are close t o  the optimal, there i s  

a good chance that  the solution is  global. 

by a small mount, and the process of finding the min-max repeated with 

the l a s t  set of SOC parameters a$ the initial. guess. This operation can 

next T i t s  should be increased 

be i te ra ted  u n t i l  the T i t s  are what they should be, 

In the case of 8 finite time problem, first consider the s i tuat ion 

when ell the states are accessible. It was indicated e a r l i e r  t ha t  i f  the 

problem time is large compared t o  the  la rges t  time constant of the system, 

then the SOC parameters art close t o  the optimal evaluated at  tdo. 

Therefore for  large T, t h e  initial value of the optimal parameters are 

8 good ini t ia l  guess for  the 8OC paraoleters. If the problem time is  small, 

then a f t e r  findin$ a solution for  some e e s w d  large T one can reduce T by 

8 rurll amount and repeat with the l a s t  set of 8OC parameters as the i n i t i a l  

guess. The process can be continued till (L solution for the given value 

of T i s  found. 

If not a l l  the s ta tes  are accessible, then the results obtained above 

can be uaed as the i n i t i a l  guess and the steps given for  t h e  inhini te  time 

problem repeated u n t i l  a solution for  a desired set of ' T i t s  is aktained. 

&is method of determining the i n i t i a l  guess has beep found very, effective 
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I 

I 
I 

i n  practice.  

f a s t  convergence r a t e  

It not only gave better results, but also  had a r e l a t ive ly  

Like the i n i t i a l  guess, the problem of step size arises only i n  

minimization. 

step s ize  fcr minimization 116,171 

There are various ways of choosing a proper value of the 

But for  the problem a t  hand one has 

t o  take in to  Consideration the res t r ic t ions  imposed by the f ac t  t h a t  the 

basic problem is  t o  find min-max and not ‘just the minimum of a functional. 

Essentially one would l i k e  t o  keep the changes i n  a l l  of the control 

parameters small so t ha t  the change i n  two successive maximizing i n i t i a l  

s t a t e s  i s  also small  and the corresponding ma- decrease monotonically 

with successive i terat ions.  For the  computations reported in t h i s  thesis, 

the step s ize  A was chosen such tha t  the maxtrmUn change i n  any of the  con- 

t r o l  parameters wati 2$ or  less. This method of finding the step s ize  has 

been found very satisfactory i n  the majority of cases. 

!ke convergence of the min-max algorithm as outlined i n  section 5.1 

was based on the assumption tha t  the variations i n  control variables for  

minimization and i n  s t a t e  variables for maxLmization during one cycle of 

the min-max operatiqn, are of the same order. Since the  changes i n  xo 

during maximization are not under the d i rec t  control of the programmer, 

6K and 6x may not be of the same order of magnitude; 6x may be much 

greater.  

though - is  not equal o r  close t o  zero. 

When t h i s  happens no fbrbher inqravement i n  Jo i s  possible even 
aJO I n  such a case, t o  be on the  
aK 

safe side, maximization should be the l a s t  operation performed. 

The algorithm fo r  minimization given i n  section-5.5 assumes the set 

Of control parameters t o  be open and unbounded. V e r y  of’ten the control 

parameters are constrained due to physical considerations. Ho and 
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Brent& 2173 have considered the Problem of minimization of a fuiictional 

with constrained variables. Using t h e i r  bpproach, the algorithm for 

minimization presented i n  t h i s  thes i s  can easi* be modified, if 5 is  

compact 

5.10 SOC Design Procedure 

I n  the l i g h t  of the 8oC problem fonmrlatYob as given i n  Chapter I11 

and the computational methods presented i n  t h i s  Ohapter, the procedure for  

the design of a specific optimal control system can be readily d t l i n e d .  

!his is i l lus t ra ted  i n  Rtgure 5.11 i n  the form of a flow graph. 

A t  first sight it may gppear t h a t  the design procedure advocated 

here i s  lengthy and compl.icated.cmpared t o  the triU-and-error design 

procedure (see Flgure 1.1) which is prevalent loday among practicing con- 

t r o l  engineers. Ho4ever one should real ize  tha t  the SOC method of design 

is  highly adept t o  the d i g i t a l  computer and a s  such the ,man-hours required 

t o  complete a design may actually be reduced by using t h i s  method. :-This 

is especially true i n  the case of pnrltivariable and time varying systems. 
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CONCLUSIONS AND RECOMMENDATIONS 

6.1 Summary and Conclusions 

This resear& has been concerned with the application of modern 

control theory t o  the design af l inear,  multivariable and time-varying 

control systems. Lack of generalized methods for  practically feasible 

design and the apparent versa t i l i ty  of modern control theory have been 

the major source of motivation, 
I 

The basic contribution o f t h i s  thesis i s  the design procedure de- 

veloped by amalgamation of conventional design practice and optimal con- 

t r o l  theory. 'phis design procedure involves two d is t inc t  phases. Phase 

1 consists of the  determination of a quadratic (primary) performance index 

which incorporates the performance specification fo r  the  syqtem, and the  

solution of the  corresponding optimal control problem. Phase 2 cal l s  for  

the selection of a pract ical ly  feasible controller configuration and the  

determination of i t s  parameters such tha t  the system performance w i t h  the 

specific controller is as close as possible t o  the  performance with the 

,optimal controller. 

In  the preceeding chapters Phase l i s  discussed only br ief ly  as the 

solution of the optimal control problem w i t h  quadratic performance index 

is  very w e l l k n m .  

choice of the primary performance index frarri the engineering point of 

In  the author's opinion i n  a majority of cases, t he  



vier i s  not a difficult tark. 

lbcut ioa  o i t h e  second phase of the  dorrign, t o  s t a r t  afth, c e l l s  

for  the configuration of a pract ical ly  feaeible controller. 

experience i n  conventional design practice can be used advantageously a t  

t h i s  stage. 

0ne1s 

To be precise ei particular configuration i s  considered i n  t h i s  

thes i r .  

syrrtem is  guaranteed t o  be stable.  

It i r  s h m  tha t  if the plant is time-invariant, the result ing 

A computational method is glvea for the determination of the unlcnown 

parameters for the specific controller. 

mine the best values of the parameters for the most unfavorable i n i t i a l  

The approach taken is  t o  deter- 

s ta tes ,  so that  i f  the syetcm i s  i n  any other i n i t i a l  s ta te ,  the system 

performance w i l l  be be t te r  than the worst anticipated. This is achieved 

by forming a r a t i o  of the performance indices of the 8oC and the optimal 

systems. 

and minimized w i t h  respect t o  the control parameters. 

This r a t i o  i e  Blaldraieed with respect t o  the i n i t i a l  s ta tes  

Of major a$gniflcance i o  the maximization procedure based on the 

theory of quadratic foras, which yields: the global meldrmun. For mini- 

mization a simple gradient method i s  used which i s  specifically suited 

for l inear  plants with quadratic performance indices. This method has 

been found t o  be more efficient and l e s s  time consuming than those given 

i n  11,4,7,101. 

!Be computationallnethods developed are applied t o  several examples 

t o  test the theory and t o  demonstrate the improvement i n  the result when 

compared t o  other methods. 

In  conclusion it i s  sincerely hoped tha t  t h i s  work w i l l  create a 

renewed interest  among practicing control engineers,Icta&g them t o  con- 

s ider  the use of optimal control theory, i n  par t icular  for  the design of 
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multivariable and time-varying control systems. 

6.2 Recommendations for -her Research 
- 

Several aspects of the problem considered above remein t o  be in- 

vestigated. mese are enumerated below: 

For the  non-autonomous case it was shown tha t  the secondary 

performance index i s  given by 

The method developed i n  Chapter V for  finding the  global maxLmum 

does not apply here. Apparently a l i nea r  transformation on the 

i n i t i a l  states is not of much help. Some other way of finding 

the  global meldmum of Jo with respect t o  xo must be sought. 

For a f e w  special  types of non-linear systems the optimal control 

law can be found. 

performance indices (Liapunov m c t i o n s )  are not quadratic for  

As a rule the  primary or  the intermediate 

non-linear, systems. merefore a t o t a i ly  different compiits5fonal 

method needs t o  be developed for  such systems. 

No consideration t o  t h e  possibi l i ty  of presence of noise or  

disturbance i n  the system is  given. 

the noisy systems would be desirable: 

In  section 5.9 it was indicated tha t  i f  the order of magnitude 

of 6x i s  much larger than tha t  of 6K, no f'urther improvement i s  

possible. 

improvement i n  the computational algorithm, a detailed study of 

the nature of the function Jo(x ,K) i n  the  neighborhood of such 
0 

a point may be rewarding. 

Extension of the results t o  

'. \ 

For a better understanding of the problem and possible 

i 
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5) A large portion of t h i s  study is devoted t o  only one par t icular  

conflguration of the controller. 

cerci ruch a controller would not be tJati8faCtOry. 

que8tion a t  t h i r  point is: 

configuration (feedback or feedforward) which will do a better 

It i 6  conceivable t h a t  i n  some 

A natural  

how does one decide on another 

job? A precise anewer t o  t h i r  question i 8  open for investigation, 

6) Investigation of the requirements on the controller configuration 

for  s t a b i l i t y  of time-varyin6 syrtuna is another problem tha t  

needs attention. 

6.3 Closing Remark8 
I 

It rhould be noted tha t  in the  design procedure outlined on page 4 

or 67, the emphasis is on mcetirq the rpecifications and not on what 

the  perfonnance index or i t s  numerical value is. A natural  question a t  

t h i s  point is what is toptimall or'speciflc opt,imal' about such a system? 

The answer can only be negative. In e sense the term optimal condroller 

(or SOC) is  a misnomer. The adjective here is real ly  for the method used 

t o  determine the controller and not for  the controller i t se l f .  
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